C++ Coding Guidelines for COPASI WORKING PAPER 1/20

C++ Coding Guidelines for COPASI

Under Development

Stefan Hoops on October 29, 2007

C++ Coding Guidelines for COPASI WORKING PAPER 2/20

C++ Coding Guidelines for COPASI WORKING PAPER 3/20

Contents

1 Naming Conventions 6

1.1 Class Names o o e e e e 6

1.2 Variable Names o o e 6

1.3 Method Name e 6

2 Program Code Guidelines 7

2.1 Useof#include e e 7

2.1.1 Order of #include in Header Files 7

2.1.2 Orderof #includein Code Files 7

2.2 LOOPS . o v e 8

3 Code Documentation 9

3.1 Class Documentation i e e e e e e e e e 9

3.2 Variable Documentation e e e e e 9

3.3 Method Documentation e e e e e e 9

3.4 Incline Code Documentation e e e e e e 9

4 COPASI Object Structure 10

4.1 ODbJect o 10

42 COoMtaiNer v vt e e e e e e e e e e 11

4.3 COPASIVECIOr o o e e e e e 11

4.4 Parametero e 11

4.5 Parameter GrOUD o v v i v e 11

4.6 Dependencies e e e e e e e e e e e 11

5 The Model State 12

5.1 State Template Order e e 12

5.2 Setting the Initial State L. e e e e 12

5.3 Settingthe State e e 13

5.4 Applying ASSIZNMENtS e e e e e e e e e e e e e 13

5.5 Calculating Current Values L e 13

C++ Coding Guidelines for COPASI WORKING PAPER 4720

5.6 Dependency Specifications e e e e e 13
5.6.1 Imitial Values e 13
5.6.1.1 Metabolite with Assignment 13

5.6.1.2 Metabolite without Assignment 13

5.6.1.3 Compartment, Global Quantity with Assignment 13

5.6.1.4 Compartment, Global Quantity without Assignment 14

5.6.1.5 Moiety e 14

5.6.2 Transient Values L 14
5.6.2.1 Metabolite Reaction (Independent) 14

5.6.2.2 Metabolite Reaction (Dependent) e 14

5.6.2.3 Metabolite Assignment (Concentration)o 14

5.6.2.4 Metabolite ODE (Concentration) i v i vttt et e 14

5.625 MOiety e e e e e 14

5.6.2.6 Reaction e e 14

5.6.277 Model Value Assignment e e 14

5.6.2.8 Model Value ODE 14

5.6.2.9 Compartment ASSIZNMENt L. e e e e e e e e e e 14

5.6.2.10 Compartment ODE 16

6 Installation Structure 18
6.1 UNIX 18
6.2 MacOS X . . . e 19
6.3 WINdows e 19
6.4 Handling Installation Differences L 20

C++ Coding Guidelines for COPASI WORKING PAPER 5/20

List of Tables

5.1
52
53
54
55
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15
5.16

State Template Order L e e e 12
Metabolite with Assignment L e e 13
Metabolite without AsSignment oL e e e e e e e e e e 13
Compartment, Global Quantity with Assignment L e 13
Compartment, Global Quantity without Assignment 14
MOIELY . . . o o e e e e e e e e e 14
Metabolite Reaction (Independent) e e e 14
Metabolite Reaction (Dependent) L 15
Metabolite Assignment (Concentration)ttt e e e e 15
Metabolite ODE (Concentration) v v v it e e e e e e e e e e e e 15
MOIBLY o e e e e e 15
Reaction 15
Model Value ASSIgNment i e e e e e e e e e e e e e e e e 16
Model Value ODE o e 16
Compartment ASSIZNMENtt v it e e e e e e e e e e e e e e e 16

Compartment ODE 17

C++ Coding Guidelines for COPASI WORKING PAPER 6/20

Chapter 1

Naming Conventions

The intent of naming conventions is to allow programmers, which are not familiar with the code to easily grasp the meaning and
scope of symbols in the source code. Each programmer of COPASI should adhere for its own benefit and to the advantage of the
project to the following conventions.

1.1 Class Names

Class names must all start with a capital letter C. This is followed by a descriptive name. This name might be composed by
different words. These words must all start with capital letters and are concatenated without underscores. Good examples for
class names include: CCopasiXMLParser , CExpatTemplate, and CMathModel.

1.2 Variable Names

In general a variable name should be descriptive. This name might be composed by different words. These words must all start
with capital letters and are concatenated without underscores. In addition the following standards should be followed:

Counters might be used such as i, k, and 1, which may be used in loops.
Iterators might be used such as it and end, which may be used in loops.
Pointers are prepended with a lower case letter p.

Method Parameters must start with a lower case letter.

Class Member Variables are prepended with a lower case letter m.
Class Member Pointers must have the prefix mp.

1.3 Method Name

Method names should have a descriptive name starting with a lower case letter. This name might be composed by different
words. These words beginning with the second must start with capital letters and are concatenated without underscores. Good
examples for method names include: createMetabolite, compileIfNecessary, and buildMoieties

In addition the following standards should be followed:

Retrieval Methods must start with get followed by the member variable name without the prefix.
Set Methods must start with set followed by the member variable name without the prefix.
Boolean Query Functions should start if applicable with is.

C++ Coding Guidelines for COPASI WORKING PAPER 7/20

Chapter 2

Program Code Guidelines

2.1 Use of #include

To minimize compilation problems on the different platforms and with the libraries COPASI depends on it is necessary to define
some rules, which need to be followed when specifying include files in the COPASI code.

The #include statement distinguishes between two different type of include files.

e Global Includes: Global include files are indicated by surrounding the filename with < and >, i.e. the statements looks like:
#include <filename>. Allfiles not located in the COPASI source tree are considered global includes.

e Local Includes: Local include files are indicated by surrounding the filename with double quotes, i.e. the statements looks
like: #include "filename". Allfiles located in the COPASI source tree are considered local includes.

2.1.1 Order of #include in Header Files

The number of include statements in header files should be kept to the minimum necessary to compile the header file, i.e., a
COPASI code file just containing the following two lines of code must compile successfully:

#include "copasi.h"
#include "filename"

To achieve the minimal list of includes one should replace all not needed includes with forward declarations as often as possible.
Please note that it should never be necessary to include copasi.h in a header file.

1. Qt Header Files: Qt header files must appear first. Please note that the Qt header file names are all lowercase.
2. Global Header Files: Other global header files must appear next.

3. COPASI Header Files: All COPASI header files must be included with the full filename starting with the copasi
directory, i.e., the include statement looks like #include "copasi/.."

2.1.2 Order of #include in Code Files

1. Qt Header Files: Qt header files must appear first. Please note that the Qt header file names are all lowercase.
Global Header Files: Other global header files must appear next.
copasi.h: This file must precede all other local includes since they depend on the defines of copasi.h to be present.

COPASI Header Files: COPASI header files must be included after copasi .h.

A

blaswrap.h or clapackwrap.h: These two wrapper files must appear last as their defines often conflict with other includes.

C++ Coding Guidelines for COPASI WORKING PAPER 8/20

2.2 Loops

Counter or iterators used in loops must not be declared in the for statement as the scope of the variables declared within is not
well defined in C and C++ standard and thus leads to compile problems. The solution is to define those variables prior to the
for statement.

C++ Coding Guidelines for COPASI WORKING PAPER 9/20

Chapter 3

Code Documentation

3.1 Class Documentation

The COPASI team uses doxygen to generate API documentation. It is therefore necessary that the classes, methods, and variables
or documented completely.

3.2 Variable Documentation
3.3 Method Documentation

3.4 Incline Code Documentation

C++ Coding Guidelines for COPASI WORKING PAPER 10/20

Chapter 4

COPASI Object Structure

COPASI has an object structure which is used to access all objects which can be calculated, plotted, or printed. Objects can be
grouped to larger objects called containers. COPASI itself functions as a root container, i.e., it contains all objects which might
be of interest for calculation or output. The access to any object is provided with an LDAP like common name (CN) which can
be resolved starting from any container.

4.1 Object

The object (class CCopasiObject) is the main building block of the object structure. Each object has the following main
attributes:

ATTRIBUTE LIST

std: :string mObjectName The name of the object.
std: :string mObjectType The type of the object, e.g. Compartment.
CCopasiContainer * mpObjectParent A pointer to the objects parent container.

unsigned int mObjectFlag A flag indicating object properties.

In addition to the expected get and set methods the objects provides the following methods:

METHOD LIST

CCopasiContainer * getObjectAncestor (const std::string &type) const This method retrieves the
closest ancestor of the object of the specified type.

virtual CCopasiObjectName getCN() const This method retrieve the common name (CN) of the object.

C++ Coding Guidelines for COPASI

WORKING PAPER

11/20

4.2

4.3

4.4

4.5

4.6

Container
COPASI Vector
Parameter
Parameter Group

Dependencies

C++ Coding Guidelines for COPASI WORKING PAPER 12/20

Chapter 5

The Model State

5.1 State Template Order

This section describes whether and in which order the above calculated simulation objects appear in the initial and current state
of the model. The order is described by the class CStateTemplate. Please note that all objects with the type "Fixed" are marked
"Unused" as there is no need to calculate them during simulation.

Object Type Status
Model Time Used
Model Value ODE Used
Compartment ODE Used
Metabolite ODE Used
Metabolite Reaction Independent
Metabolite Reaction Dependent
Metabolite Assignment Used
Compartment Assignment Used
Model Value Assignment Used

Any Any Unused

Table 5.1: State Template Order

5.2 Setting the Initial State

The initial state of a COPASI model is due to the introduction of assignments for all model entities no longer determined through
fixed values. To calculate the current initial values those assignments have to be evaluated at t = Ty. These evaluation will effect
in many cases other initial values. For example the initial particle numbers of metabolites will change when a compartment’s
initial volume changes. To detemine the initial values, which need to be recalculated as well as the functions used for their
calculation COPASI uses a dependecy system. In this system each initial value stores the information on which values it depends
and which method to call to recalculated its value.

Since the change of one initial value may now result in a complicated chain of updates for other initial values it no longer suffices
to use its update method to set its value. We need to add an additional step which will update all values effected by the change.
To retrive the list of needed refreshes in the proper order the class CModel provides the following method.

vector<Refresh *> buildInitialRefreshSequence (set<const CCopasiObject x> &changedObjects);
This method retrieves a vector of refresh methods, which must be called to update all other initial values given a set of
changed objects. If the set of changed objects is empty the method will return a vector of refresh method, which suffices
to synchronize all initial values.

C++ Coding Guidelines for COPASI WORKING PAPER

13/20

5.3 Setting the State
5.4 Applying Assignments
5.5 Calculating Current Values

5.6 Dependency Specifications

5.6.1 Initial Values

5.6.1.1 Metabolite with Assignment

Attribute Dependencies Refresh Method
Elllltrftl)iamde Initial Concentration, parent compartment Volume refreshlnitital Value
Initial Concentration | all objects in implicit expression refreshlnitial Concentration

Table 5.2: Metabolite with Assignment

5.6.1.2 Metabolite without Assignment

Attribute Dependencies Refresh Method
Initial Particle L . .
initial concentration, parent compartment volume refreshlnitial Value
Number
Initial Concentration | parent compartment Volume refreshInitital Concentration

Table 5.3: Metabolite without Assignment

The initial concentration is of course dependent on the initial particle number. This must be taken into account manually to avoid
circular depencies. However, this is straight forward as the initial particle number may only be set directly, in which case no
further dependencies are encountered or calculated from the initial concentration in the case the concentration is given the normal
dependecies take care of the problem.

5.6.1.3 Compartment, Global Quantity with Assignment

Attribute

Dependencies

Refresh Method

Initial Value

all objects in implicit expression

refreshlnitial Value

Table 5.4: Compartment, Global Quantity with Assignment

C++ Coding Guidelines for COPASI

WORKING PAPER

14 /20

Attribute

Dependencies

Refresh Method

Initial Value

none

none

Table 5.5: Compartment, Global Quantity without Assignment

Attribute

Dependencies

Refresh Method

Initial Number

Particle numbers of all involved metabolites

refreshlnitial Value

5.6.1.4
5.6.1.5 Moiety
5.6.2
5.6.2.1

5.6.2.2

Table 5.6: Moiety

Compartment, Global Quantity without Assignment

Transient Values

Metabolite Reaction (Independent)

Metabolite Reaction (Dependent)

5.6.2.3 Metabolite Assignment (Concentration)

This will be implemented later

5.6.2.4 Metabolite ODE (Concentration)

This will be implemented later

5.6.2.5 Moiety

5.6.2.6 Reaction

5.6.2.7 Model Value Assignment

5.6.2.8 Model Value ODE

5.6.2.9 Compartment Assignment

This will be implemented later

Attribute

Dependencies

Refresh Method

Self

none

none

Particle Number

Self (state controlled)

none

Concentration

Particle Number, parent compartment Volume

refreshConcentration

Particle Rate

All particle fluxes of reactions the metabolites participates in

refreshRate

Concentration Rate

Particle Rate, Concentration, parent compartment Volume and
Rate

refreshConcentrationRate

Transition Time

All particle fluxes of reactions the metabolites participates in

refreshTransitionTime

Table 5.7: Metabolite Reaction (Independent)

C++ Coding Guidelines for COPASI

WORKING PAPER

15/20

Attribute Dependencies Refresh Method
Self none none

Particle Number none none

Concentration Particle Number, parent compartment Volume refreshConcentration
Particle Rate All particle fluxes of reactions the metabolites participates in refreshRate

Concentration Rate

Particle Rate, Concentration, parent compartment Volume and
Rate

refreshConcentrationRate

Transition Time

All particle fluxes of reactions the metabolites participates in

refreshTransitionTime

Table 5.8: Metabolite Reaction (Dependent)

Attribute Dependencies Refresh Method
Self none none
Particle Number Concentration, parent compartment Volume refreshNumber
Concentration all objects in expression calculate
Particle Rate (NA) none none
Concentration Rate
(NA) none none
Transition Time
(NA) none none

Table 5.9: Metabolite Assignment (Concentration)
Attribute Dependencies Refresh Method
Self none none
Particle Number Self (state controlled) none
Concentration Particle Number, parent compartment Volume refreshConcentration
Particle Rate all objects in expression, parent compartment Volume calculate

Concentration Rate

Particle Rate, Concentration, parent compartment Volume and
Rate

refreshConcentrationRate

Transition Time

Particle Number, Particle Rate

refreshTransitionTime

Table 5.10: Metabolite ODE (Concentration)

Attribute Dependencies Refresh Method
Self Particle number of participating independent metabolites none
Dependent Number Self none
Table 5.11: Moiety
Attribute Dependencies Refresh Method
Self all variables of the kinetic function, associated compartment calculate
Volume, Kinetic function, all metabolites involved
. all variables of the kinetic function, associated compartment
ParticleFlux calculate
Volume
all variables of the kinetic function, associated compartment
Flux calculate

Volume

Table 5.12: Reaction

C++ Coding Guidelines for COPASI

WORKING PAPER

16/20

Attribute Dependencies Refresh Method
Self none none
Value all objects in expression calculate
Rate (not available) none none
Table 5.13: Model Value Assignment
Attribute Dependencies Refresh Method
Self none none
Value Self (state controlled) none
Rate all objects in expression calculate
Table 5.14: Model Value ODE
5.6.2.10 Compartment ODE
This will be implemented later
Attribute Dependencies Refresh Method
Self none none
Volume all objects in expression calculate
Rate (not available) none none

Table 5.15: Compartment Assignment

C++ Coding Guidelines for COPASI

WORKING PAPER

17 /20

Attribute Dependencies Refresh Method
Self none none

Volume Self (state controlled) none

Rate all objects in expression calculate

Table 5.16: Compartment ODE

C++ Coding Guidelines for COPASI WORKING PAPER 18/20

Chapter 6

Installation Structure

This section defines the installation structure for COPASI on different platforms. Each platform will adhere to the platform
specific requirements.

6.1 Unix

The installation location needs to be available to COPASI at runtime and therefore the environment variable COPASIDIR point-
ing to this location must be set by the user.

SCOPASIDIR

+- bin

| +- CopasiSE
| +- CopasiUI

+— share
+— copasi
+- doc
+— html

+- figures

+- DefaultPlotAdded. jpg

+- ModelSettingsDialog. jpg

+— ObjectBrowserSelection. jpg
+- ObjectBrowserTree. jpg

+— PlotDefinition. jpg

+— PlotWindow. jpg

+- ReactionDialog. jpg

+- ReactionOverview. jpg

+- ReactionOverviewEmpty. jpg
+— ReportDefinitionDialog. jpg
+- TimeCourseDialog. jpg

F= ooo

+- TutWiz-Stepl.html

+— TutWiz-Step2.html

+— TutWiz-Step3.html

+— TutWiz-Step4.html

+— TutWiz-Step5.html

+— TutWiz-Step6.html

+- examples

| +- CircadianClock.cps

| +— Metabolism-2000Poo.xml
| +- YeastGlycolysis.gps

| +- brusselator.cps

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| +-

C++ Coding Guidelines for COPASI WORKING PAPER 19/20

| +— icons

| +— copasi icon small.png
+—- README

+— ChangelLog

6.2 MacOS X

The installation location must be available to COPASI at runtime.

MacOS X.

$SCOPASIDIR
+— CopasiSE.app
| +— Contents
| | +— MacOS
[+— CopasiSE
+- CopasiUI.app
+- Contents
+-— MacOS
| +- CopasiUI
+- Resources
+- doc
+— html
+- figures
| +- DefaultPlotAdded. jpg
| +- ModelSettingsDialog. jpg
| +- ObjectBrowserSelection. jpg
| +- ObjectBrowserTree. jpg
| +- PlotDefinition.jpg
| +- PlotWindow. jpg
| +- ReactionDialog. jpg
| +- ReactionOverview. jpg
| +- ReactionOverviewEmpty.jpg
| +- ReportDefinitionDialog.jpg
| +- TimeCourseDialog. jpg
| = coo
+-— TutWiz-Stepl.html
+— TutWiz-Step2.html
+— TutWiz-Step3.html
+-— TutWiz-Step4.html
+— TutWiz-Step5.html
+— TutWiz-Step6.html
= oo
+- Info.plist
+— examples

| +- CircadianClock.cps
| +— Metabolism-2000Poo.xml
| +- YeastGlycolysis.gps
| +- brusselator.cps

| += ...

+—- COPASI-README.rtf

6.3 Windows

The installation location must be available to COPASI at runtime.

Windows specific means.

However it is possible to determine the location through

However it is possible to determine the location through

C++ Coding Guidelines for COPASI WORKING PAPER 20/20

SCOPASIDIR

+— bin

| +— CopasiSE
| +- CopasiUI

+— share
+- copasi
+- doc

+— html
+- figures
+- DefaultPlotAdded. jpg
+— ModelSettingsDialog. jpg
+- ObjectBrowserSelection. jpg
+- ObjectBrowserTree. jpg
+— PlotDefinition. jpg
+- PlotWindow. jpg
+- ReactionDialog. jpg
+— ReactionOverview. jpg
+- ReactionOverviewEmpty. jpg
+— ReportDefinitionDialog. jpg
+— TimeCourseDialog. jpg
= 000
+— TutWiz-Stepl.html
+— TutWiz-Step2.html
+- TutWiz-Step3.html
+— TutWiz-Step4.html
+— TutWiz-Step5.html
+— TutWiz-Step6.html

+- examples
| +- CircadianClock.cps
| +— Metabolism-2000Poo.xml
| +- YeastGlycolysis.gps
| +— brusselator.cps
[
+- dcons
+- Copasi.ico
+— CopasiDoc.ico
+- LICENSE.txt
+- README.txt
+- ChangeLog

6.4 Handling Installation Differences

The handling of differences in the installation structure must be dealt with in one place within the COPASI code. The place for
this is the class COptions. In this class the method:

template<class CType> static void getValue (const std::string &name, CType &value)

provides access to common options within COPASI. The following values will deal with installation dependent settings: Copa-—
siDir, TempDir, ExampleDir, and WizardDir. The following code shows how to retrieve the location of the examples
files for COPASI:

std::string ExampleDir;
COptions::getValue (' ‘ExampleDir’’, ExampleDir);

To assure that the values are correctly set any main program must call:

COptions::init (argc, argv);

	Naming Conventions
	Class Names
	Variable Names
	Method Name

	Program Code Guidelines
	Use of #include
	Order of #include in Header Files
	Order of #include in Code Files

	Loops

	Code Documentation
	Class Documentation
	Variable Documentation
	Method Documentation
	Incline Code Documentation

	COPASI Object Structure
	Object
	Container
	COPASI Vector
	Parameter
	Parameter Group
	Dependencies

	The Model State
	State Template Order
	Setting the Initial State
	Setting the State
	Applying Assignments
	Calculating Current Values
	Dependency Specifications
	Initial Values
	Metabolite with Assignment
	Metabolite without Assignment
	Compartment, Global Quantity with Assignment
	Compartment, Global Quantity without Assignment
	Moiety

	Transient Values
	Metabolite Reaction (Independent)
	Metabolite Reaction (Dependent)
	Metabolite Assignment (Concentration)
	Metabolite ODE (Concentration)
	Moiety
	Reaction
	Model Value Assignment
	Model Value ODE
	Compartment Assignment
	Compartment ODE

	Installation Structure
	Unix
	MacOS X
	Windows
	Handling Installation Differences

