clo++ Users Manual WORKING PAPER 1/15

clo++ Users Manual

Peter Jones on October 30, 2007

clo++ Users Manual WORKING PAPER 2/15

Copyright (©) 2001, 2002, 2003 Peter Jones (http://pmade.org/pjones/)

Redistribution and use in source (SGML DocBook) and ’compiled’ forms (SGML, HTML, PDF, PostScript, RTF and so forth)
with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code (SGML DocBook) must retain the above copyright notice, this list of conditions and the
following disclaimer as the first lines of this file unmodified.

2. Redistributions in compiled form (transformed to other DTDs, converted to PDF, PostScript, RTF and other formats) must
reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

Important
THIS DOCUMENTATION IS PROVIDED BY THE AUTHORS "AS IS" AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
® NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

clo++ Users Manual WORKING PAPER 3/15

clo++ Users Manual WORKING PAPER 4/15

Contents

1 Introduction 1
1.1 Whatisclo++? e e 1
1.2 Features o o e e e e e 1
1.3 Supported Option Types o o o e e 2
1.4 Option Modifiers e e e e e 2
1.5 Option Grouping o ot i e e e e e 2
2 Quick Start 3
2.1 Building and Installing e e e e e e e e 3
2.2 Writing Your Firstclo++ XML File oo e 3
2.3 Running clo++ L L e 3
3 Option Types 4
3.1 FlagOption Type o o o o e e e e 4
32 BoolOption Type o o e e 6
33 Enum Option Type o o o o e e e e e e e e 6
34 IntOption Type e 7
3.5 Double Option Type o o e e e e e e e e e e e 8
3.6 String Option Type L L 9
A Requirements 10
A.1 Software Dependencies e 10
A.2 Supported Platforms e e 10
B Revision History 11
B.1 Version 0.6.4 11
B.2 wversion 0.6.3 L. e 11
B3 version 0.6.2 L L e e e e 11
B4 wversion 0.6.1 11
B.5 Version 0.6.0 e 12
B.6 Version 0.5.0 e 12
B.7 Version 0.4.0 e 12

B.8 Version 0.3.0 L e 12

clo++ Users Manual WORKING PAPER 5/15
C To Do List 13
C.l1 Feature ToDOList e e 13
C2 Milestone 0.7.0 e 13
C.3 Milestone 0.8.0 e e e e e e e 13
C4 Milestone 0.9.0 e 14
C.5 Milestone 1.0.0 e 14
D Credits 15
D.1 Continued Contributions L e e 15
D.2 Contributions to Version 0.3.0 e e e e e e 15

clo++ Users Manual WORKING PAPER 6/15

List of Tables

3.1 Common Option Attributes o oo e e e e e e e 4
3.2 Common Option Child Elements e e 5
3.3 Flag Option Attributes o o e e e e e e 5
3.4 Bool Option Attributes o o e e e e e e e e e e e 6
3.5 Enum Option Attributes L. e e e e 7
3.6 Enum Option Child Elements e e e e e 7
3.7 IntOption Attributes L. e e e e 7
3.8 IntOption Child Elements e e 8
3.9 Double Option Attributes e e e e e e 8
3.10 Double Option Child Elements e e e e e 9
3.11 String Option Attributes e e 9

A.1 Platform List e e e e 10

Abstract

This is the manual for clo++. It describes how to use clo++ and the format of the XML input file.

The latest version of this manual can be found at http://pmade.org/software/clo++/.

http://pmade.org/software/clo++/

clo++ Users Manual WORKING PAPER 1/15

Chapter 1

Introduction

1.1 What is clo++?

clo++ is a command line option parser generator. Given an XML file that contains a description of your program and its options,
clo++ can generate code to parse its command line.

In addition to code generation, clo++ can also generate man pages. Other languages and output formats can easily be added
because clo++ generates its output using templates.

1.2 Features

clo++ tries to provide enough features to parse most forms of command line options without going overboard. In most cases, if
clo++ does not support a specific feature you are looking for, you can use an existing feature and customize it in your application.

The following list is just a quick overview of the feature list for clo++.

e Option description is done using a simple XML dialect instead of a complex proprietary language.

e The users of your application do not have to have clo++ installed. Just include the output from clo++ with your software
packages. The clo++ output does not have any license or restrictions.

e Automatic generation of help messages.

o Single character options start with a dash (’-*) and multi-character options start with a double dash (’--’);

e Support for multiple sub-commands that take their own options. (Similar to cvs commit, cvs add, etc.)

e Multi-character options and commands can be abbreviated depending on a configuration setting in the XML file.

e Single character options can be bundled. (-aeiou).

e Multi-character options can include their argument in the option name or it can be separate. (--option=one --option two).

e Options can have default values. You can see if the value of an option is the result of its default value or its presence on the
command line by checking its location value.

e Options can be hidden. That is, they can be used on the command line but will not be shown in the help message or man page.
e Options and Groups can be mandatory. This means that the option/group is required to be used.

e Options can be strict. This means that the option can not be used on the command line more than once. If an option is not
strict, it will be allowed on the command line more than once and the last time it is used it the final value of the option.

e The clo++ source code is released under a BSD license. There are very few restrictions on its use.

http://tazthecat.net/~isaac/libtpt/

clo++ Users Manual WORKING PAPER 2/15

1.3 Supported Option Types

clo++ supports the following option types.

o flag - This option takes no arguments and simply sets a boolean value to indicate its presence on the command line.

e bool - This option takes an argument that is parsed as a boolean value. You can define words that you consider true and false
in your XML file.

e enum - This option takes an argument that must be in a list of allowed words. The parser then converts the argument into an
enum member for you.

e int - This option takes an argument that must be completely convertible to an integer. You may also specify a minimum and/or
a maximum value in your XML file.

e double - This option takes an argument that must be completely convertible to a real number. You may also specify a minimum
and/or a maximum value in your XML file.

e string - This option takes an argument that is not parsed and is just stored as a raw character string.

1.4 Option Modifiers

All options except the flag option can have modifiers. Here is a quick overview of the modifier types.

e vector - Each time the option is repeated on the command line its value is pushed into a vector.

e map - The option can take key=value pairs where the key is a string and the value is the value type for the option. This also
implies that the option can be repeated.

1.5 Option Grouping

clo++ also supports option grouping. There are three types of groups that an option can be part of. Here is a quick description of
them.

e and - This group allows you to enforce the presence of all contained options if one of the options in the group is used.

e or - This group is used to say that at least one option in the the group must be given, but more than one is acceptable.

e xor - This group is used when you want to ensure that a group of options can not be used at the same time.

clo++ Users Manual WORKING PAPER 3/15

Chapter 2

Quick Start

We start off with a quick start guide. This is just a fast overview to get you working with clo++ as soon as possible.

2.1 Building and Installing

You build clo++ using the configure.pl perl script that comes in the tarball. If you have the xm12-config script that
comes with libxml2 in your path you can just run configure.pl.

If xm12-config is notin your path, you can use the --xml2-config option to configure.pl.

After yourun configure.pl you are ready to run make. Then, after everything compiles, you can run make install.

2.2 Writing Your First clo++ XML File

Before you can run clo++, you should have an XML file ready. The XML file should describe the command line options that you
wish to parse.

A good place to start is the examples directory. There are some example XML files and C++ code that uses the generated C++
code. You may also want to look at the DTD, it is in the dtd directory.

2.3 Running clo++

After you have an XML file all ready to go, you can run clo++. I assume that you want to generate C++ code, so we are going to
use the -0 ¢++ option to clo++.

If your XML file is called options.xml then this is the command that you would run to generate the C++ header file and
source file.

clo++ -0 c++ options.xml

To learn about the other command line options that clo++ can take, try running clo++ -h.

http://xmlsoft.org/

clo++ Users Manual WORKING PAPER 4/15

Chapter 3

Option Types

This chapter deals with the various option types. Options are expressed in the XML file using <opt ion> elements.

Each option has optional and mandatory attributes. It also has some optional and mandatory elements. Most options share the
same attributes and elements.

Attribute Name G Description Valid Values Default Value
Mandatory
. flag, bool, enum, int, None, you must give
type Mandatory The option type double or string an option type
d Mandatory Unique ID An alpha-numeric None,lyou. must give
value an option id
mandato Optional Whether or not this €s Or no no
Y p option must be used y
. . Strict options cannot
strict Optional yes or no no
be repeated
Allowed locations commandline
location Optional where the option can ’ both
configfile or both
be used
Whether or not this
option should be
hidden Optional hidden from help yes or no no
messages and man
pages

Table 3.1: Common Option Attributes

3.1 Flag Option Type

The flag option does not take an argument, thus it is used only to know if the option is on the command line. The first time it
appears on the command line it will negate the default value. Each time it appears after that it will negate the last value.

To disable this negation behavior, make the option strict. this will prevent the option from repeating.

Unlike other option types, flag options cannot use modifiers. Flag options can, like all options, be mandatory, although it does
not make much sense.

Flag options can also be autothrow options.

Example:

clo++ Users Manual

WORKING

PAPER 5/15

Element Name

Description

Option name. This element may be repeated for each name
you want to give to an option.

Single character names make short options (ie, -a) and
multi-character names make long options (ie, --alpha). The

name first
The first name given will be the master name. The master
name is the one presented to the user in error and help
messages.
Small description of the option that is used in help
comment
messages.
Long description of the option.
The description is not given directly in the
description <description> element but rather in child elements
called <para> similar to DocBook.
Table 3.2: Common Option Child Elements
Attribute Name L OiEllare Description Valid Values Default Value
Mandatory
default Optional The 1n1.t ial value of A valid boolean value | false
the option.
autothrow Optional Make this option an Unique None, you must give

autothrow option.

alpha-numeric ID an id

Table 3.3: Flag Option Attributes

clo++ Users Manual WORKING PAPER 6/15

<option id="flagid" type="flag">
<name>myflag</name>
<name>m</name>

<comment>my flag option</comment>
</option>

3.2 Bool Option Type

The bool type option is used to set a boolean value from a string argument. The given argument will be tested against allowed
words for true and false. Words that are not recognized as being true or false will not be allowed.

You can control which words are considered true or false by using the <t rue> and <false> elements inside the <config>
element.

Attribute Name L OiEllQre Description Valid Values Default Value
Mandatory

default Optional The ml.t ial value of A valid boolean value | false

the option
. . The modifier to use,

modifier Optional . none, vector or map none
if any
The string to display

argname Optional for the name of the A short string bool
argument

Table 3.4: Bool Option Attributes
Example:

<option id="boolid" type="bool">
<name>mybool</name>
<name>m</name>

<comment>my bool option</comment>
</option>

3.3 Enum Option Type

The enum type option takes a string argument that must match one of the allowed strings for the given option. The string is then
translated into an enum member.

Example:

<option id="fruit" type="enum" argname="fruit">
<name>fruit</name>
<name>f</name>

<enum id="apl" name="apple"/>
<enum id="org" name="orange"/>
<enum id="str" name="strawberry"/>

clo++ Users Manual WORKING PAPER 7/15

Attribute Name o Ginl Or Description Valid Values Default Value
Mandatory
. The initial value of The name of one of The first defined

default Optional .

the option the enum members enum member

. . The modifier to use,

modifier Optional . none, vector or map none

if any

The string to display
argname Optional for the name of the A short string enum

argument

Table 3.5: Enum Option Attributes

Element Name Description

The enum element is used to add a member to the enum. It
has two attributes.

The id attribute will be appended to the option id to create
enum the enum member name.

The name attribute is the name the user will use on the
command line for this member.

Table 3.6: Enum Option Child Elements

<comment>give a fruit you want me to eat</comment>
</option>

3.4 Int Option Type

The int option takes a string argument that is converted to an integer. The the entire string cannot be converted to an integer, an
error will occur.

Attribute Name QjHaiEll o Description Valid Values Default Value
Mandatory

default Optional The 1n1.t ial value of A valid integer value | 0

the option
. . The modifier to use,

modifier Optional . none, vector or map none
if any
The string to display

argname Optional for the name of the A short string int
argument

Table 3.7: Int Option Attributes
Example:

<option id="age" type="int">
<name>age</name>
<name>a</name>

<range min="0" max="150"/>

clo++ Users Manual WORKING PAPER 8/15

Element Name Description

The range element allows you to restrict the value of the
given integer using either a minimum value, maximum
value or both.

The min attribute sets the minimum value that will be
accepted.

The max attribute sets the maximum value that will be
accepted.

range

Table 3.8: Int Option Child Elements

<comment>give your age</comment>
</option>

<option id="count" type="int">
<name>count</name>
<name>c</name>

<range min="0"/>

<comment>give the number of times to repeat</comment>
</option>

<option id="number" type="int">
<name>number</name>

<name>n</name>

<comment>give a number</comment>
</option>

3.5 Double Option Type

The double option is similar to the int option. It takes a string argument that is converted into a real number. If the entire string
cannot be converted and error will occur.

Attribute Name o Ginl Or Description Valid Values Default Value
Mandatory

default Optional The 1n1't ial value of A valid real number 0.0

the option
. . The modifier to use,

modifier Optional . none, vector or map none
if any
The string to display

argname Optional for the name of the A short string double
argument

Table 3.9: Double Option Attributes
Example:

<option id="mydouble" type="double">
<name>mydouble</name>

clo++ Users Manual WORKING PAPER

9/15

Element Name Description

value or both.

range
& accepted.

accepted.

The range element allows you to restrict the value of the
given double using either a minimum value, maximum

The min attribute sets the minimum value that will be

The max attribute sets the maximum value that will be

Table 3.10: Double Option Child Elements
<name>m</name>

<comment>give me a double</comment>
</option>

3.6 String Option Type

The string option takes a string argument that is not parsed in any way.

Attribute Name Optional or Description Valid Values Default Value
Mandatory
. The initial value of . .
default Optional the option A string value An empty string
. . The modifier to use,

modifier Optional if any none, vector or map none

The string to display
argname Optional for the name of the A short string string

argument

Table 3.11: String Option Attributes
Example:

<option id="first" type="string">
<name>first</name>
<name>f</name>

<comment>give your first name</comment>
</option>

clo++ Users Manual WORKING PAPER 10/ 15

Appendix A

Requirements

clo++ should compile on any platform that has a working ISO 14882-1998 compliant compiler. Okay, so there is no such thing,
but your compiler should be pretty close.

No platform specific code is used anywhere in clo++, including the code that it generates. All code is pure C++.

(:) Warning
clo++ will not compile if you are using any version of GCC prior to version 3.0 unless you use the STLport. Furthermore,
it will not operate correctly if compiled under GCC versions between 3.0 and 3.0.3 (due to bugs with exceptions).

A.1 Software Dependencies

clo++ has dependencies on the following software.

e Perl 5 - Only needed to configure clo++. Perl is not used any other time.

e libxml2 - The XML parser that clo++ uses. Other parsers will be supported in the future.

A.2 Supported Platforms

clo++ is supported on the following platforms with the given compilers. If you successfully compile clo++ on a platform that is
not listed here, please drop us a note.

Platform Operating System Compiler

1A32 FreeBSD versions 4.4 - 4.6 GCC versions 3.0.3-3.2
1A32 Linux (RH 7.3) GCC version 3.2
SPARC Solaris 2.7 GCC version 3.0.4

Table A.1: Platform List

http://xmlsoft.org/
mailto:clo++@pmade.org

clo++ Users Manual WORKING PAPER

11/15

Appendix B

Revision History

B.1 Version 0.6.4

Made a change to the generated code to surpress a compiler warning about an unused variable.

Added xsl/clo++2html.xsl to show how to convert the clo++ XML file to HTML.

e Added work around in build scripts for a bug in the Perl 5.8 regex parser thanks to Andy Chou.

Updated xmlwrapp to version 0.4.2 and libtpt to version 1.20.1a.

B.2 version 0.6.3

Version 0.6.3 is a bug fix release.

e Upgraded xmlwrapp to version 0.4.1. clo++ should compile against libxml2 version >= 2.5 now.
o Upgraded libtpt to version 1.20 with a custom patch to fix a bug on 64bit platforms.

o Fixed a few bugs that caused bad C++ code to be generated for complex subcommands.

B.3 version 0.6.2

the following changes where made to clo++ for version 0.6.2.

e Added support for the Sun Forte compiler using STLport.

e upgraded libtpt to version 1.10.5.

B.4 version 0.6.1
the following changes where made to clo++ for version 0.6.1.

e added missing include of the <iterator> header file in two source files (thanks goes to doug henry).

Added the cxx_include variable so you can have the generated C++ header file include other header files.

clo++ Users Manual WORKING PAPER 12/15

e changed the example makefiles so that gnumake would know that the .cxx file extension is for c++ files. (thanks goes to richard
booth).

e added rpm spec file in build/rpm. (thanks goes to warwick hunter).

e upgraded libtpt to version 1.0.1 and xmlwrapp to version 0.2.2.

B.5 Version 0.6.0

The following changes where made to clo++ for version 0.6.0.

e clo++ can now generate man pages.

Modified clo++.dtd. Added elements to the program element for man page generation. Removed the program/description
element and replaced it with the new program/heading element.

e Added new XSLT file to convert old clo++ version 0.3.0 XML files to the new XML format.

Added another chapter to the documentation.

Upgraded libtpt to 0.9.5.

B.6 Version 0.5.0

Version 0.5.0 was a complete rewrite.

B.7 Version 0.4.0

Version 0.4.0 was never released to the public.

B.8 Version 0.3.0

First public version.

clo++ Users Manual WORKING PAPER 13/15

Appendix C

To Do List

C.1 Feature To Do List

e Allow automap to automatically place non-options that look like a key=value pair into the given map.

e Allow autovector to place non-options into the given vector instead of the default non-options vector.

e Allow commands to be hidden similar to hiding options.

e Add a new option type, count. This type is similar to flag but gets incremented each time it is present on the command line.
e Add an option to allow a ’+’ to start a long option.

e Find some way to skip unknown options in a safe way. Stuff like *-display’ for GTK+ programs.

e Allow enum arguments to be abbreviated.

e Add config flag to make things case-insensitive.

e Don’t allow C++ keywords to be used as option IDs when generating C++ code. Also, make sure that autohelp names are not
used as names for other options.

e Add member functions to the main parser class for getting the help strings.

C.2 Milestone 0.7.0

e Finish users manual (XML format and C++ API)
e Fix any bugs.

e Implement any requested features. Implement the items from the "Features To Do List".

C.3 Milestone 0.8.0

e Finish template manual so others can write templates.
e Fix any bugs.

e Implement any requested features.

clo++ Users Manual

WORKING PAPER

14/15

C.4 Milestone 0.9.0

o Code freeze. Make stable.

C.5 Milestone 1.0.0

e First stable release.

clo++ Users Manual WORKING PAPER 15/15

Appendix D

Credits

This section is dedicated to those people who contributed in some way to clo++. If I have forgotten you, please forgive me and
drop me a note.

D.1 Continued Contributions

The following people make on-going contributions to clo++

e Peter Jones
— Project maintainer and lead developer.
e [saac Foraker

— Author of the template system that clo++ uses.

— Likes to report bugs.
e Warwick Hunter

— Contributed an RPM spec file.

D.2 Contributions to Version 0.3.0

The following people either contributed patches or suggestions to clo++ version 0.3.0. Since version 0.3.0 was not supported,
their hard work was never applied to the source code.

Although their contributions where not used in clo++, these are the people that inspired clo++ version 0.5.0.

e Matthias Berse
e Christophe de Vienne

e Diab Jerius

http://pmade.org/cgi-bin/people.cgi?p=pj
http://pmade.org/cgi-bin/people.cgi?p=if
http://tazthecat.net/~isaac/libtpt/

	Introduction
	What is clo++?
	Features
	Supported Option Types
	Option Modifiers
	Option Grouping

	Quick Start
	Building and Installing
	Writing Your First clo++ XML File
	Running clo++

	Option Types
	Flag Option Type
	Bool Option Type
	Enum Option Type
	Int Option Type
	Double Option Type
	String Option Type

	Requirements
	Software Dependencies
	Supported Platforms

	Revision History
	Version 0.6.4
	version 0.6.3
	version 0.6.2
	version 0.6.1
	Version 0.6.0
	Version 0.5.0
	Version 0.4.0
	Version 0.3.0

	To Do List
	Feature To Do List
	Milestone 0.7.0
	Milestone 0.8.0
	Milestone 0.9.0
	Milestone 1.0.0

	Credits
	Continued Contributions
	Contributions to Version 0.3.0

