
Optimisation
in COPASI

Pedro Mendes

School of Computer Science Univ. Manchester

Manchester Centre for Integrative Systems Biology
Virginia Bioinformatics Institute, Virginia Tech

http://www.comp-sys-bio.org

pedro.mendes@manchester.ac.uk

@gepasi on twitter

http://www.comp-sys-bio.org/
mailto:pedro.mendes@manchester.ac.uk

Modelling cycle

Model &
parameters

behaviour:
simulation

data

behaviour:
experimental

data

literature

Forward modelling

Inverse modelling

Text mining

Publication of
experiments

Knowledge
formation

Knowledge
retrieval

knowledge

Optimization
given a real-valued scalar
function f(x,k)
of n parameters k=(k1, ..., kn)

• find a minimum of f(x,k)
such that

• gi(x)≥0 with i=1,..., m
(inequality constraints)

• hj(x)=0 with j=1,..., m’
(equality constraints)

● Note that max f = min -f

● Optimization methods
attempt to maximize or
minimize an objective
function

● Optimization is able to find
the parameter values that
result in some property

● Properties of interest must
be expressed as minima or
maxima

Applications of optimisation in biochemical
network modeling

● In addition to their role in
parameter estimation,
optimisation methods are
also important in other
applications of modeling

● Exploratory modeling
• Explore the properties of a

model in a wide range of
conditions

• Similar objective to
parameter scans and
bifurcation analysis

● Metabolic engineering
• Rational improvement of

biotechnological processes
through modeling

● Evolutionary studies
• Study of basic principles of

biochemical evolution
through modeling

Numerical optimization cycle

Function evaluation
f(x,k)

i

determine new
parameter values k

i

Satisfied?

Initial parameter
guess

Solution
yes

no
ODE solutionoptimization

Optimization methods

Based on derivatives:
● Levenberg-Marquardt
● Steepest descent
● Truncated Newton

Direct search:
● Hooke & Jeeves
● Nelder & Mead (simplex)
● Praxis

Evolutionary:
● Genetic algorithm
● GA w/ stochastic ranking
● Evolutionary programming
● Evolution strategy w/

stochastic ranking

Other stochastic:
● Simulated annealing
● Particle swarm
● Random search

Numerical optimization methods

● Gradient search
• Steepest descent
• Newton and quasi-

Newton
• Levenberg-Marquardt
• Conjugate gradient

● Direct search
• Hooke and Jeeves
• Nelder and Mead

(simplex)
• Powell
• Brent's praxis

These methods rely on derivatives of
the objective function. They are,
therefore applicable only to
differentiable functions. Some
methods require the functions to have
second derivatives. Strictly speaking,
these methods require analytical
expressions of the derivatives, but can
be used with numerical estimates.

These methods do not rely on
derivatives, not even on their
(numeric) estimates. They rely on
memorizing previous estimates of
parameters, and on heuristics. They
only require the objective function to
be continuous, not differentiable.

Gradient search

Using derivatives to find good search
directions

Steepest descent

● Considering that the
function is
differentiable:
• It decreases at

maximum speed in
the direction of -∇:

• For a small enough α
• Then iterate as:

● Rather than using a small
constant α, carry out a
line search in the direction
of -∇ at each step

b=a−∇ f a

f a≥ f b

xi1=xi− i ∇ F x i

f  x0≥ f  x1≥ f  x2...≥ f xn

Newton method for minimisation

● If F(x) is twice-
differentiable, then:

● Method only converges if
initial point is close to
solution

● Hessian matrix has large
memory requirements

● Carry out a line search in
the direction of -∇/H at
each stepxi1=xi− i

∇ f  xi

H f  xi

f  x0≥ f  x1≥ f  x2 ...≥ f xn

H f a=[∂2 f
∂ ai a j

]

Practical variants of Newton method

● Since Newton method is
not garanteed to
converge, but steepest
descent is:
• Levenberg-Marquardt

uses an adaptive linear
combinantion of the
steepest and Newton
directions

• L-M is very robust and
in practice the method
of choice for least-
squares

● Quasi-Newton methods
avoid recalculating the
Hessian, using instead
some approximation, e.g.
the BFGS algorithm

Direct search

Using memory to find good search directions

Simplex methods

● A simplex is an object
consisting of n+1
vertices (in a space of
n dimensions)

● A new simplex can
always be formed on
any face of a given
simplex by the
addition of only a
single new point

1

2

3

4 5

In two
dimensions:

The simplex method
of Spendley, Hext and Himsworth (1962)

The downhill simplex method
of Nelder and Mead (1965)

● Nelder and Mead proposed
an important variant, where
the simplices are no longer
necessarily regular

● They created rules that
expand and contract the
simplex, in addition to
reflections

● This allows the method to be
adaptive, quicker, and
results in better
approximations to the
solution

Stochastic methods

Using probabilistic methods to find
good search directions

Global optimization

● Global optimization is the
task of finding the absolutely
best set of admissible
conditions to achieve an
objective under given
constraints, assuming that
both are formulated in
mathematical terms
(Neumaier, 2004)

● Examples:
• Protein folding
• Traveling salesman
• Scheduling tasks and slots
• Chemical equilibrium
• Least squares
• Packing (Kepler's problem)

● Classification:
• Incomplete
• Asymptotycally complete
• Complete
• rigorous

Grid search

● In grid search all points on a
fine grid (in parameter
space) are tested, and the
best retained

● Algorithm scales as O(np)
• n: number of grid points

per dimension

• p: number of parameters
● Solution quality depends on

grid density
● Impractical even for small

dimensions

p=2, n=6, total = 62 = 36

p=2, n=11, total = 112 = 121

Random search

● In random search a fixed
number of random points (in
parameter space) are tested
and the best retained

● Algorithm scales with O(n)
• n: total number of points

● Solution quality depends on
grid density

● Usually performs very badly
● … but sometimes can

outperform all other methods

total = 36

total = 121

Multistart

● An improvement over
random search

● Carry out a local
minimization for each
random parameter guess

● Improves solution quality
● Performance is still bad

since local min. May be
too costly (time)

● A further improvement is
to cluster points so as not
to visit clusters 2nd time

total = 36

total = 36

Minimization by analogy with Nature
(statistical mechanics)

● “Perfect” crystals are
formed by melting, and
then cooling down slowly,
allowing the material to
reach equilibrium at each
temperature

● If cooling is fast, the crystal
will have imperfections; if it
is too fast it will become
amorphous (glass)

● Local optimization
algorithms are similar to
cooling materials too fast

● Metropolis et al. (1953)
proposed an algorithm to
simulate an ensamble of
particles in equilibrium at
a certain temperature

● The Boltzmann probability
density function:

probability that a certain
particle configuration with
energy E has at a certain
temperature T

p.d.f.=e
−E
k B T

1. Start with an arbitrary
position for one atom, k(0)

2. Create a small random
displacement to obtain k(1)
and calculate the
difference in energy
ΔE=E(1)-E(0)

3. If ΔE<0 accept the new
position k(1) , otherwise
accept it only with
probability

4. Iterate algorithm a large
number of times,
simulating the thermal
motion of particles in a
heat bath of temperature
T

5. This choice of probability
P(ΔE) evolves the system
to a Boltzmann distribution

6. Note that the Metropolis
algorithm allows the
energy to increase
(though, with probability of
decreasing with T)

P  E =e
− E
k B T

Metropolis algorithm

Simulated annealing
Kirkpatrick, Gelatt, Vecchi (1983)

● The energy of a particle
configuration is similar to
the value of an objective
function

● The atom coordinates are
similar to the parameters
of the objective function

● The temperature is a
control parameter with
the same units as the
objective function

● Simulated annealing starts
by “melting” the objective
function to a high enough
temperature

● It uses the Metropolis
algorithm to calculate the
equilibrium of the
objective at a certain
temperature

● A cooling schedule must
be defined (i.e. how the
energy will be decreased)

Evolutionary algorithms

Using populations and selection to
optimize functions

Minimization by analogy with Nature
(evolutionary algorithms)

● Populations evolve by the
action of variation and
selection

● Evolutionary algorithms
are a class of optimization
methods that are based
on evolving candidate
solutions as an ensemble,
rather than one at a time

● Algorithms differ in
method of variation,
selection and how
numeric values are
represented

● Gene parameter↔
● Chromosome all ↔

parameters
● Individual candidate ↔

solution
● Generation iteration↔
● Fitness objective ↔

function value
●

Evolutionary algorithms evolve populations
of solutions

Generation n → Generation n+1

Evolutionary programming
(Fogel et al., 1966)

● Parameters are encoded
as real numbers: genes
are numbers

1. Generate a random initial
population of n individuals

2. Calculate the fitness of
each individual in the
population

3. Each individual from the
current population
generates an offspring by
copying its own genes

4. Mutate each locus in the
offspring with a small
variance

5. Put the offspring in the
new population (now 2n)

6. Select n individuals
probabilistically as a
function of fitness to be
removed (back to n)

7. Go to step 2 with the new
population, or stop if
satisfied

Selection and mutation operators

Mut  x=xN 0, Paramter 1

P
aram

eter 2
Each individual is
compared with a small
number of others
(random) and it
receives a score that is
the number of those
others that are less fit
that itself. The n
individuals with the
best scores are chosen.

A stochastic sort
algorithm is used such
that the individuals are
almost sorted by fitness,
but not exactly.

● Mutation operator: add
one small normal random
number to the original
value:

● Selection operator: find
the n best individuals in a
probabilistic way, i.e. may
not be exactly the best...
• Roullete wheel
• Tournament selection
• Stochastic ranking

Genetic algorithm
Holland (1975) De Jong (1975)

● Parameters are encoded
in binary: genes are
strings of binary digits

1. Generate a random initial
population of n individuals

2. Calculate the fitness of
each individual in the
population

3. Choose two parent
individuals from the
current population
probabilistically as a
function of fitness

4. Cross them over at a
randomly chosen locus to
produce two offspring

5. Mutate each locus in the
offspring with a small
probability

6. Put the offspring in the
new population

7. Go to step 2 with the new
population, or stop if
satisfied

Mutation and cross-over operators

● Mutation operator:
change one bit:

● Cross-over operator:
from two parents,
produce two offspring
with genetic
recombination
• Cross-over can happen at

one or more points

Mut  x=x1, x∈{0,1}

010010010110

010010010100

011000110111 010010010110

010010110111 011000010110

Cross-over
point

Selection vs. variation

● Selection is responsible
for keeping
improvements in the
population

● Mutation and cross-over
are responsible for
introducing variation in
the population, i.e. drift
in the parameter values

● Very strong selection
results in uniform
populations that are
have many copies of a
good individual

● Very strong variation
results in that good
solutions do not
progress but are
constantly replaced by
new random ones

Termination criteria

● After a prespecified
number of generations
• Not easy to guess how many

generations are required,
usually requires some trial
and error

● When best solution
reaches a prespecified
level of fitness
• Appropriate if the required

level of fitness is known a
priori, but this is often not
possible

● When the variation of
individuals from one
generation to the next
reaches a prespecified
level of stability
• Given that convergence can

be punctuated, this is
generally not a good
criterion

Parameter estimation
with COPASI

Pedro Mendes

School of Computer Science Univ. Manchester

Manchester Centre for Integrative Systems Biology
Virginia Bioinformatics Institute, Virginia Tech

http://www.comp-sys-bio.org

pedro.mendes@manchester.ac.uk

@gepasi on twitter

http://www.comp-sys-bio.org/
mailto:pedro.mendes@manchester.ac.uk

Modelling cycle

Model &
parameters

behaviour:
simulation

data

behaviour:
experimental

data

literature

Forward modelling

Inverse
modelling

Text
mining

Knowled
ge
formatio
n

Knowled
ge
retrieval

Publication
of
experiment
s

knowledge

Parameter Estimation

• Given a set of data, adjust a model's
parameter values such that the distance
between the model behaviour and the data is
minimal

• An essential part of parameter estimation
consists on the application of numerical
optimisation algorithms.

• In particular, many parameter estimation
applications rely on either of the following
• minimisation of a least squares function
• minimisation of other distance measure

• Given a nonlinear
function

• And a set of
observations χ
Find the minimum
of

• By changing k
(parameters)

Least-squares methods

∑ − f  x , k 2

f  x ,k 

Scale problem

 Some of the model variables being fit are of very
different scales

 Each variable trajectory (or steady state) is then
multiplied by a weight

 Weights rescale the importance of each variable
in the fit

 In COPASI weights can be changed

Enzyme kinetics

Michaelis­Menten
mechanism

S + E ⇄ ES k1,1, k1,2

ES E + S → k2

Data from spectrophotometer
measurements

Biomodels 10

Kholodenko BN. (2000) Negative feedback and ultrasensitivity can bring about oscillations
in the mitogen-activated protein kinase cascades. Eur J Biochem. 267(6):1583-8

Biomodels 23

Rohwer JM, Botha FC. (2001) Analysis of sucrose accumulation in the sugar cane
culm on the basis of in vitro kinetic data. Biochem J. 358(Pt 2):437-45

A → X r1(k) = 1
2X + Y → 3X r2(k) = 1
X + B → Y + D r3(k) = 1
X → E r4(k) = 1

X, Y are the variables

A, B, D and E are fixed
concentrations

All reactions follow mass action
kinetics

dX
dt

=A⋅r1k X 2
⋅Y⋅r2k − X⋅B⋅r3k − X⋅r4k 

dY
dt

=X⋅B⋅r3k −X 2⋅Y⋅r2k 

Brusselator

Fitting the Brusselator model
to the data

201020 40

Population size

generations

SSQ
PARAMETER FITTING
method: Genetic algorithm
 Generations = 5000
 Population = 40
 iterations = 2151
 simulations = 87488
 time = 999.959 s
 speed = 87.4916 simulation/s
 BEST SOLUTION:
 Sum of squares = 0.539357
 Std. deviation = 0.0524578
 RMS error = 0.0519306
 Parameter Value Std.Deviation

 R1(k) 1.028 1.709e-005 (0.00%)
 R2(k) 0.889 2.083e-005 (0.00%)
 R3(k) 0.9169 0.0004926 (0.05%)
 R4(k) 1.028 0.00056 (0.05%)

