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Optimization
given a real-valued scalar 
function f(x,k) 
of n parameters k=(k1, ..., kn)

• find a minimum of f(x,k) 
such that 

• gi(x)≥0 with i=1,..., m   
(inequality constraints)

• hj(x)=0 with  j=1,..., m’ 
(equality constraints)

● Note that max f = min -f 

● Optimization methods 
attempt to maximize or 
minimize an objective 
function

● Optimization is able to find 
the parameter values that 
result in some property

● Properties of interest must 
be expressed as minima or 
maxima



Applications of optimisation in biochemical 
network modeling

● In addition to their role in 
parameter estimation, 
optimisation methods are 
also important in other 
applications of modeling

● Exploratory modeling 
• Explore the properties of a 

model in a wide range of 
conditions

• Similar objective to 
parameter scans and 
bifurcation analysis

● Metabolic engineering
• Rational improvement of 

biotechnological processes 
through modeling

● Evolutionary studies
• Study of basic principles of 

biochemical evolution 
through modeling



Numerical optimization cycle
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Optimization methods

Based on derivatives:
● Levenberg-Marquardt
● Steepest descent
● Truncated Newton

Direct search:
● Hooke & Jeeves
● Nelder & Mead (simplex)
● Praxis

Evolutionary:
● Genetic algorithm
● GA w/ stochastic ranking
● Evolutionary programming
● Evolution strategy w/ 

stochastic ranking

Other stochastic:
● Simulated annealing
● Particle swarm
● Random search



Numerical optimization methods

● Gradient search
• Steepest descent
• Newton and quasi-

Newton
• Levenberg-Marquardt
• Conjugate gradient

● Direct search
• Hooke and Jeeves
• Nelder and Mead 

(simplex)
• Powell
• Brent's praxis

These methods rely on derivatives of 
the objective function. They are, 
therefore applicable only to 
differentiable functions. Some 
methods require the functions to have 
second derivatives. Strictly speaking, 
these methods require analytical 
expressions of the derivatives, but can 
be used with numerical estimates.

These methods do not rely on 
derivatives, not even on their 
(numeric) estimates. They rely on 
memorizing previous estimates of 
parameters, and on heuristics. They 
only require the objective function to 
be continuous, not differentiable.



Gradient search

Using derivatives to find good search 
directions



Steepest descent

● Considering that the 
function is 
differentiable:
• It decreases at 

maximum speed in 
the direction of -∇:

• For a small enough α
• Then iterate as:

● Rather than using a small 
constant α, carry out a 
line search in the direction 
of -∇ at each step

b=a−∇ f a

f a≥ f b

xi1=xi− i ∇ F x i

f  x0≥ f  x1≥ f  x2...≥ f xn



Newton method for minimisation

● If F(x) is twice-
differentiable, then:

● Method only converges if 
initial point is close to 
solution

● Hessian matrix has large 
memory requirements

● Carry out a line search in 
the direction of -∇/H at 
each stepxi1=xi− i

∇ f  xi

H f  xi

f  x0≥ f  x1≥ f  x2 ...≥ f xn

H f a=[ ∂2 f
∂ ai a j

]



Practical variants of Newton method

● Since Newton method is 
not garanteed to 
converge, but steepest 
descent is:
• Levenberg-Marquardt 

uses an adaptive linear 
combinantion of the 
steepest and Newton 
directions 

• L-M is very robust and 
in practice the method 
of choice for least-
squares

● Quasi-Newton methods 
avoid recalculating the 
Hessian, using instead 
some approximation, e.g. 
the BFGS algorithm



Direct search

Using memory to find good search directions



Simplex methods

● A simplex is an object 
consisting of n+1 
vertices (in a space of 
n dimensions)

● A new simplex can 
always be formed on 
any face of a given 
simplex by the 
addition of only a 
single new point

1

2

3

4 5

In two 
dimensions:



The simplex method 
of Spendley, Hext and Himsworth (1962)



The downhill simplex method 
of Nelder and Mead (1965)

● Nelder and Mead proposed 
an important variant, where 
the simplices are no longer 
necessarily regular

● They created rules that 
expand and contract the 
simplex, in addition to 
reflections

● This allows the method to be 
adaptive, quicker, and 
results in better 
approximations to the 
solution



Stochastic methods

Using probabilistic methods to find 
good search directions



Global optimization

● Global optimization is the 
task of finding the absolutely 
best set of admissible 
conditions to achieve an 
objective under given 
constraints, assuming that 
both are formulated in 
mathematical terms  
(Neumaier, 2004)

● Examples:
• Protein folding
• Traveling salesman
• Scheduling tasks and slots
• Chemical equilibrium
• Least squares
• Packing (Kepler's problem)

● Classification:
• Incomplete
• Asymptotycally complete
• Complete
• rigorous



Grid search

● In grid search all points on a 
fine grid (in parameter 
space) are tested, and the 
best retained

● Algorithm scales as O(np)
• n: number of grid points 

per dimension

• p: number of parameters
● Solution quality depends on 

grid density
● Impractical even for small 

dimensions

p=2, n=6, total = 62 = 36

p=2, n=11, total = 112 = 121



Random search 

● In random search a fixed 
number of random points (in 
parameter space) are tested 
and the best retained

● Algorithm scales with O(n)
• n: total number of points

● Solution quality depends on 
grid density

● Usually performs very badly
● … but sometimes can 

outperform all other methods

total = 36

total = 121



Multistart

● An improvement over 
random search

● Carry out a local 
minimization for each 
random parameter guess

● Improves solution quality
● Performance is still bad 

since local min. May be 
too costly (time)

● A further improvement is 
to cluster points so as not 
to visit clusters 2nd time 

total = 36

total = 36



Minimization by analogy with Nature
(statistical mechanics)

● “Perfect” crystals are 
formed by melting, and 
then cooling down slowly, 
allowing the material to 
reach equilibrium at each 
temperature

● If cooling is fast, the crystal 
will have imperfections; if it 
is too fast it will become 
amorphous (glass)

● Local optimization 
algorithms are similar to 
cooling materials too fast

● Metropolis et al. (1953) 
proposed an algorithm to 
simulate an ensamble of 
particles in equilibrium at 
a certain temperature

● The Boltzmann probability 
density function:

probability that a certain 
particle configuration with 
energy E has at a certain 
temperature T

p.d.f.=e
−E
k B T



1. Start with an arbitrary 
position for one atom, k(0)

2. Create a small random 
displacement to obtain k(1) 
and calculate the 
difference in energy 
ΔE=E(1)-E(0)

3. If ΔE<0 accept the new 
position k(1) , otherwise 
accept it only with 
probability
 

4. Iterate algorithm a large 
number of times, 
simulating the thermal 
motion of particles in a 
heat bath of temperature 
T 

5. This choice of probability 
P(ΔE) evolves the system 
to a Boltzmann distribution

6. Note that the Metropolis 
algorithm allows the 
energy to increase 
(though, with probability of 
decreasing with T)

P  E =e
− E
k B T

Metropolis algorithm



Simulated annealing
Kirkpatrick, Gelatt, Vecchi (1983)

● The energy of a particle 
configuration is similar to 
the value of an objective 
function

● The atom coordinates are 
similar to the parameters 
of the objective function

● The temperature is a 
control parameter with 
the same units as the 
objective function

● Simulated annealing starts 
by “melting” the objective 
function to a high enough 
temperature

● It uses the Metropolis 
algorithm to calculate the 
equilibrium of the 
objective at a certain 
temperature

● A cooling schedule must 
be defined (i.e. how the 
energy will be decreased)



Evolutionary algorithms

Using populations and selection to 
optimize functions



Minimization by analogy with Nature
(evolutionary algorithms)

● Populations evolve by the 
action of variation and 
selection

● Evolutionary algorithms 
are a class of optimization 
methods that are based 
on evolving candidate 
solutions as an ensemble, 
rather than one at a time

● Algorithms differ in 
method of variation, 
selection and how 
numeric values are 
represented

● Gene  parameter↔
● Chromosome  all ↔

parameters
● Individual  candidate ↔

solution
● Generation  iteration↔
● Fitness  objective ↔

function value
●



Evolutionary algorithms evolve populations 
of solutions

Generation n             →         Generation n+1



Evolutionary programming
(Fogel et al., 1966)

● Parameters are encoded 
as real numbers: genes 
are numbers

1. Generate a random initial 
population of n individuals

2. Calculate the fitness of 
each individual in the 
population

3. Each individual from the 
current population 
generates an offspring by 
copying its own genes

4. Mutate each locus in the 
offspring with a small 
variance

5. Put the offspring in the 
new population (now 2n)

6. Select n individuals 
probabilistically as a 
function of fitness to be 
removed (back to n)

7. Go to step 2 with the new 
population, or stop if 
satisfied



Selection and mutation operators

Mut  x=xN 0, Paramter 1

P
aram

eter 2
Each individual is 
compared with a small 
number of others 
(random) and it 
receives a score that is 
the number of those 
others that are less fit 
that itself. The n 
individuals with the 
best scores are chosen.

A stochastic sort 
algorithm is used such 
that the individuals are 
almost sorted by fitness, 
but not exactly.

● Mutation operator: add 
one small normal random 
number to the original 
value:

● Selection operator: find 
the n best individuals in a 
probabilistic way, i.e. may 
not be exactly the best... 
• Roullete wheel
• Tournament selection
• Stochastic ranking



Genetic algorithm
Holland (1975) De Jong (1975)

● Parameters are encoded 
in binary: genes are 
strings of binary digits

1. Generate a random initial 
population of n individuals

2. Calculate the fitness of 
each individual in the 
population

3. Choose two parent 
individuals from the 
current population 
probabilistically as a 
function of fitness

4. Cross them over at a 
randomly chosen locus to 
produce two offspring

5. Mutate each locus in the 
offspring with a small 
probability

6. Put the offspring in the 
new population

7. Go to step 2 with the new 
population, or stop if 
satisfied



Mutation and cross-over operators

● Mutation operator: 
change one bit:

● Cross-over operator: 
from two parents, 
produce two offspring 
with genetic 
recombination
• Cross-over can happen at 

one or more points

Mut  x=x1, x∈{0,1}

010010010110

010010010100

011000110111 010010010110

010010110111 011000010110

Cross-over
point



Selection vs. variation

● Selection is responsible 
for keeping 
improvements in the 
population

● Mutation and cross-over 
are responsible for 
introducing variation in 
the population, i.e. drift 
in the parameter values

● Very strong selection 
results in uniform 
populations that are 
have many copies of a 
good individual

● Very strong variation 
results in that good 
solutions do not 
progress but are 
constantly replaced by 
new random ones



Termination criteria

● After a prespecified 
number of generations
• Not easy to guess how many 

generations are required, 
usually requires some trial 
and error

● When best solution 
reaches a prespecified 
level of fitness
• Appropriate if the required 

level of fitness is known a 
priori, but this is often not 
possible

● When the variation of 
individuals from one 
generation to the next 
reaches a prespecified 
level of stability
• Given that convergence can 

be punctuated, this is 
generally not a good 
criterion



Parameter estimation 
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Parameter Estimation

• Given a set of data, adjust a model's 
parameter values such that the distance 
between the model behaviour and the data is 
minimal

• An essential part of parameter estimation 
consists on the application of numerical 
optimisation algorithms.

• In particular, many parameter estimation 
applications rely on either of the following
• minimisation of a least squares function
• minimisation of other distance measure



• Given a nonlinear 
function 

• And a set of 
observations χ
Find the minimum 
of

• By changing k 
(parameters)

Least-squares methods

∑ − f  x , k 2

f  x ,k 



Scale problem

 Some of the model variables being fit are of very 
different scales

 Each variable trajectory (or steady state) is then 
multiplied by a weight

 Weights rescale the importance of each variable 
in the fit

 In COPASI weights can be changed



Enzyme kinetics

Michaelis­Menten 
mechanism

S + E ⇄ ES    k1,1, k1,2

ES   E + S    → k2

Data from spectrophotometer 
measurements



Biomodels 10

Kholodenko BN. (2000) Negative feedback and ultrasensitivity can bring about oscillations 
in the mitogen-activated protein kinase cascades. Eur J Biochem. 267(6):1583-8



Biomodels 23

Rohwer JM, Botha FC. (2001) Analysis of sucrose accumulation in the sugar cane 
culm on the basis of in vitro kinetic data. Biochem J. 358(Pt 2):437-45    



A → X r1(k)   = 1
2X + Y → 3X r2(k)   = 1
X + B → Y + D r3(k)   = 1
X → E r4(k)   = 1

X, Y are the variables

A, B, D and E are fixed 
concentrations

All reactions follow mass action 
kinetics

dX
dt

=A⋅r1k X 2
⋅Y⋅r2k − X⋅B⋅r3k − X⋅r4k 

dY
dt

=X⋅B⋅r3k −X 2⋅Y⋅r2k 

Brusselator



Fitting the Brusselator model 
to the data

201020 40

Population size

generations

SSQ
PARAMETER FITTING
method: Genetic algorithm
        Generations = 5000
        Population = 40
        iterations  = 2151
        simulations = 87488
        time        = 999.959 s
        speed       = 87.4916 simulation/s
 BEST SOLUTION:
 Sum of squares = 0.539357
 Std. deviation = 0.0524578
 RMS error      = 0.0519306
 Parameter    Value       Std.Deviation
 -----------------------------------------------
 R1(k)         1.028       1.709e-005  (0.00%)
 R2(k)         0.889       2.083e-005  (0.00%)
 R3(k)         0.9169      0.0004926   (0.05%)
 R4(k)         1.028       0.00056     (0.05%)


